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Logic bugs in Database Management Systems (DBMS) are bugs that cause an incorrect result for a given query
(e.g., by omitting a row that should be fetched). These bugs are critical, since they are likely to go unnoticed
by users. We propose Query Partitioning, a general and effective approach for finding logic bugs in DBMS.
The core idea of Query Partitioning is to, starting from a given original query, derive multiple, more complex
queries (called partitioning queries), each of which computes a partition of the result. The individual partitions
are then composed to compute a result set that must be equivalent to the original query’s result set. A bug in
the DBMS is detected when these result sets differ. Our intuition is that due to the increased complexity, the
partitioning queries are more likely to stress the DBMS and trigger a logic bug than the original query. As a
concrete instance of a partitioning strategy, we propose Ternary Logic Partitioning (TLP), which is based on
the observation that a boolean predicate p can either evaluate to TRUE, FALSE, or NULL. Accordingly, a query
can be decomposed to three partitioning queries, each of which computes its result on rows or intermediate
results for which p, NOT p, and p IS NULL hold. This technique is versatile, and can be used to test WHERE,
GROUP BY, as well as HAVING clauses, aggregate functions, and DISTINCT queries. As part of an extensive
testing campaign, we found 175 bugs in widely-used DBMS such as MySQL, TiDB, SQLite, and CockroachDB,
123 of which have been fixed. Notably, 77 of these were logic bugs, while the remaining error and crash bugs.
We expect that the effectiveness and wide applicability of Query Partitioning will lead to its broad adoption
in practice, and the formulation of additional partitioning strategies.
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1 INTRODUCTION

Database Management Systems (DBMS) are used ubiquitously. Most DBMS allow inserting, delet-
ing, modifying, and querying data from a database using the Structured Query Language (SQL). As
with other software, DBMS can be affected by various kinds of bugs. In this work, we consider logic
bugs, which we define as bugs that cause the DBMS to fetch an incorrect result set for a query. For
example, for a given query, a DBMS might mistakenly omit a record from the result set, fetch a
record that should not be in the result set, or compute an incorrect result for a function or operator.
Such bugs are difficult to detect by users and might go unnoticed, especially considering the scale
of many databases.

To tackle logic bugs in DBMS, we propose a general and effective technique to which we refer
to as Query Partitioning. The core idea of Query Partitioning is, based on a given query Q with a
result set RS(Q), to derive n queries Q| ... Q;,_;, each of which computes a partial result RS(Q;).
The n partial results can then be composed using a predefined, n-ary composition operator ¢ to
obtain a result set RS(Q/}) ©RS(Q7) <. .. ©RS(Q;,_,)- For simplicity, we denote the composed partial
results as RS(Q’). The original query’s result set and the composed partitions must be equal, that is,
RS(Q’) = RS(Q). Bugs in the DBMS can then be detected by checking whether the equality indeed
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holds. While a number of partitioning strategies are imaginable, it is crucial to select one that
stresses the DBMS and its query optimizer in different ways [Giakoumakis and Galindo-Legaria
2008], either between Q”’s partitioning queries or between Q” and Q, so that an inconsistent result
set might be observed.

As part of this work, we propose Ternary Logic Partitioning (TLP), which can effectively test the
correct implementation and optimization of WHERE clauses, GROUP BY clauses, HAVING clauses, aggre-
gate functions, and DISTINCT clauses. SQL is based on a ternary boolean logic, which means that a
predicate ¢ can either evaluate to TRUE, FALSE or NULL. The predicate can be interpreted as a piecewise-
defined total function p, with the current row r as an argument:

TRUE if ¢
p(r) = {FALSE if ¢
NULL  if ¢ IS NULL

Consider a random row r from RS(Q). Irrespective of which predicate we might choose (or ran-
domly generate), we know that exactly one of the conditions of the piecewise function p must hold.
Based on this insight, we can partition any Q by deriving three queries that filter records based
on whether p holds, —p holds, or whether p is NnULL, while guaranteeing that the combined result
comprises all rows of the original query. If used to test a WHERE clause, the individual subqueries
can be aggregated using a union operator.

Consider Listing 1, which demonstrates an unknown bug that we reported for MySQL version
8.0.19 and which was fixed for version 8.0.21. Query (1) computes an incorrect result set, and
demonstrates the underlying bug. One record consisting of the rows in te and t1 should be fetched,
since ¢ and -o represent the same number, so the comparison should evaluate to TRUE. We found
this bug based on the original query @ and the partitioning queries (P). @ lacks a WHERE clause
and thus fetches the cross product of all values in te and t1; since both tables contain only a single
record, only a single record is fetched. (P) consists of three partitioning queries that are connected
by the unioN ALL keyword, which combines the queries’ result sets. We derived these queries by
generating a random predicate to.ce = t1.ce for the wHERE clause, and then creating the two other
variants with the negated predicate and 1s NuLL predicate. Thus, (P)’s result set is expected to be
the same as the one for query @ However, since the query with the predicate to.ce = t1.ce was
processed incorrectly, and resulted in the omission of the row, we detected this bug. Based on @
and (P), we manually created the test case (1) to report the bug.

Listing 1. A logic bug in MySQL caused a predicate 8=—0 to incorrectly evaluate to FALSE. The check symbol
denotes the expected, correct result, while the bug symbol denotes the actual, incorrect result.
CREATE TABLE t0(c@ INT);
CREATE TABLE t1(c@ DOUBLE);
INSERT INTO t@ VALUES (0);
INSERT INTO t1 VALUES('-0'):
(1) SELECT 4 FROM t@, t1 WHERE t@.co0 = t1.c0; —— ()R
(©) SELECT 4 FROM to, t1; — {0, -0}V
® SELECT 4 FROM t@, t1 WHERE t0.c0 = t1.c@
UNION ALL SELECT 4 FROM t@, t1 WHERE NOT(t0.c0 = t1.cQ)
UNION ALL SELECT 4 FROM t0, t1 WHERE (t@.c@ = t1.c0) IS NULL; —— ()R
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Query Partitioning addresses fundamental limitations in existing approaches. Pivoted Query Syn-
thesis (PQS) detects logic bugs by checking whether a randomly-selected pivot row is fetched cor-
rectly [Rigger and Su 2020b]. To construct a query that fetches the row, PQS relies on an implemen-
tation of the DBMS SQL dialect’s supported operators and functions. The technique has proven to
be effective. However, unlike Query Partitioning, its implementation effort is high and requires
detailed knowledge of the DBMS’ operator and function semantics. Non-optimizing Reference En-
gine Construction (NoREC) detects bugs in queries that use a WHERE predicate by rewriting the query
to disable the DBMS’ optimizations and addresses PQS’ high implementation effort [Rigger and
Su 2020a]. A major limitation of both NoREC and PQS is that they are applicable primarily to
test WHERE predicates; while they can partially be used to test other features—for example, PQS
can test DISTINCT, but cannot detect duplicate rows—it would be unclear, for example, how these
approaches could be extended to test aggregate queries.

We evaluated the effectiveness of Query Partitioning in a large-scale study on six widely-used
DBMS. We found 175 true, previously unknown bugs in five of these systems, which demonstrates
the effectiveness and generality of the proposed approach. Many of these were considered im-
portant by the developers of the DBMS, and 123 of these bugs have already been fixed. 77 bugs
were logic bugs, while the remaining error and crash bugs. Furthermore, we compared our pro-
posed approach with NoREC. Our results suggest that TLP can detect 17 bugs in features that
are out-of-scope for NoREC, and 12 additional bugs related to WHERE clauses, to which both are
applicable. Ultimately, Query Partitioning is complementary to PQS, and shares the same advan-
tages and disadvantages as NoREC, both being metamorphic test oracles [Chen et al. 1998]. Due
to the high effectiveness and low implementation effort, we believe that our approach might be
widely adopted in practice. For reproducibility, and to facilitate the adoption of TLP, we provide
our implementation at https://github.com/sqlancer.

Overall, this paper contributes the following:

e Query Partitioning, a general technique designed for finding logic bugs in DBMS that use SQL
as a query language;

e Ternary Logic Partitioning (TLP), an instantiation of Query Partitioning based on the insight
that a boolean predicate can be partitioned to evaluate to TRUE, FALSE, Or NULL;

o Concrete TLP oracles to test queries using WHERE, HAVING, and GROUP BY clauses as well as aggregate
functions and DISTINCT queries; and

e An extensive evaluation of Query Partitioning on six widely-used DBMS, in which the tech-
nique found 175 bugs, and a comparison with the state-of-the-art approach NoREC.

2 BACKGROUND

Relational DBMS. DBMS are based on a data model, which abstractly describes how data is orga-
nized. We primarily aim to test DBMS based on the relational data model proposed by Codd [1970],
on which most widely-used databases, such as Oracle, Microsoft SQL, PostgreSQL, MySQL, and
SQLite are based. Relational DBMS use a domain-specific language, Structured Query Language
(SQL), for interaction. SQL’s data model is based on bags (i.e., multisets), where the same row can
occur multiple times [Guagliardo and Libkin 2017]. This contrasts the original relational model,
which is based on the concept of sets. Since a query’s result is typically nevertheless referred to
as a result set, we also use this term in this paper. In order to merge two bags, without removing
duplicates, the multiset addition, denoted as v, is used. To exclude duplicate elements, the union
operator, denoted as U, is used. In SQL, the UNION ALL operator corresponds to ¥, and UNTON—without
ALL—to U. Both operators are used in the composition operator of different TLP test oracles.
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SQL. We assume basic familiarity with SQL, and thus provide only a minimal overview of it. In
our work, we concentrate on the SELECT statement, which allows querying data from a database.
SQL provides various ways of filtering, grouping, and aggregating data. A WHERE clause can be used
to specify which rows should be fetched. It contains a boolean predicate, which can evaluate to
TRUE, FALSE, or NULL. A number of DBMS (e.g., SQLite and MySQL) allow the usage of a predicate of
any type in a WHERE clause, as they apply implicit conversions to convert values of other types to a
boolean value. A GrRouP BY clause can be used to aggregate rows. It specifies a number of expressions,
based on which the DBMS groups rows for which the expression evaluate to the same value. They
can be used in combination with HAVING clauses, which allow filtering rows after they are grouped.
Similarly to GROUP BY, a query can contain a DISTINCT clause, to compute a result set rather than a bag
(i.e., the DISTINCT removes all duplicate rows). Aggregate functions compute values over multiple
rows. They can either be used to aggregate the final result set, or in a HAVING clause as part of a
predicate. SQL is a feature-rich language and provides a number of additional features (e.g., window
functions and transactions). While our core idea could be generalized to some additional features,
we consider them less important and out of scope.

Aggregate Functions. Various kinds of aggregate functions exist, such as MIN() and MAX() to compute
minimum and maximum values for an input expression, SUM() to sum up input values, COUNT() to
count the number of rows, and Av6() to compute the average. We base our testing ideas for aggre-
gate functions on the optimization of aggregate functions by distributing their computations [Co-
hen 2006; Jesus et al. 2015; Yu et al. 2009]. Important properties for aggregate functions were
defined [Jesus et al. 2015]. An aggregate function f is self~decomposable when a merge operator @
exists so that, given two non-empty multi-sets X and Y, the following holds: f(XwY) = f(X)& f(Y).
Many functions, including MIN(), MAX(), SUM(), and COUNT() are self-composable. For example, con-
sider suM(): SUM({x}) = x and SUM(XWY) = SUM(X)+SUM(Y). An aggregate function f is com-
posable if for some function f and a self-decomposable aggregate function h, it can be expressed
as f = goh. Every self-composable function is composable, by assigning g as the identity function.
The ave () function is composable when defining g as g((s, ¢)) = s/c and h as follows: h({x}) = (x, 1)
and A(X WY) = h(X) + h(Y). That is, the av6() function is computed by dividing the sum of values
by the number of rows: AVG(X W Y) = (SUM(X) + SUM(Y))/(COUNT(X) + COUNT(Y)).

Automatic Testing. We propose a novel automatic testing approach for DBMS. Two components
are essential. First, an effective test case should stress significant portions of the system under test.
To this end, a number of database generators have been proposed [Binnig et al. 2007b; Bruno and
Chaudhuri 2005; Gray et al. 1994; Houkjeer et al. 2006; Khalek et al. 2008; Neufeld et al. 1993], as
well as a number of query generators [Bati et al. 2007; Bruno et al. 2006; Jung et al. 2019; Mishra
et al. 2008; Poess and Stephens 2004; Seltenreich 2019; Vartak et al. 2010]. While these are impor-
tant components of an overall testing approach, they are well understood, and thus not the main
focus of this paper. We believe that any database generator and query generator that provides
control over the format of the queries generated can be used to find bugs using Query Partition-
ing. In the implementation of our approach, we use SQLancer’s database and query generation
mechanism [Rigger and Su 2020a,b]. To create a database, SQLancer heuristically selects applica-
ble options such as CREATE TABLE to create a table, CREATE INDEX to create indexes, and INSERT to insert
data into relations. To create a query, SQLancer heuristically selects applicable operators and col-
umn names (which are leaf nodes in the AST). Second, an effective test oracle needs to determine
whether the generated test case’s result is correct. A specific class of test oracles are metamorphic
ones, which can derive a test case and its expected result based on an input and output of a sys-
tem [Chen et al. 1998]. While the implementation effort for such oracles is often low, they cannot
provide a ground truth (i.e., since the output based on which the new test case is generated might
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be incorrect). The main focus of this paper is metamorphic test oracles, which are based on the
general idea of Query Partitioning.

Pivoted Query Synthesis. Pivoted Query Synthesis (PQS) was recently proposed by [Rigger and Su
2020b] to find logic bugs in DBMS. It randomly select a row, called a pivot row, based on which a
query is constructed that must fetch the pivot row. To guarantee that the row is fetched, the testing
approach executes a randomly-generated predicate and then modifies it so it evaluates to TRUE.
While this technique was highly effective, a significant limitation is that its implementation effort
is high, since the tool needs to implement all operators and functions that are tested. Furthermore,
it can only effectively test WHERE clauses, since it validates results based on a single row. Although it
can generate DISTINCT clauses and GROUP BYs, it cannot detect mistakenly fetched duplicate rows,
and omitted duplicate rows. PQS can test aggregate functions only when the table contains a single
row, which does not meaningfully test their aggregation functionality. The approach proposed
in this paper seeks to complement PQS. Query Partitioning can detect bugs in a wider range of
features and requires little implementation effort. PQS can provide a ground truth for an important
selection of core operators, and thus fill a gap left open by TLP.

NoREC. Non-optimizing Reference Engine Construction (NoREC) was recently proposed by Rig-
ger and Su [2020a] to find optimization bugs in DBMS, which are logic bugs that cause the DBMS
to incorrectly apply an optimization. The core insight of this approach is that an optimized query
can be translated to one that the DBMS cannot effectively optimize. Thus, NoREC is also a meta-
morphic testing approach. NoREC could also have detected the bug in the motivating example (see
Listing 1). Specifically, it would rewrite query (1) to another query SELECT (t0.c0 = t1.c@) IS TRUE

FRoM te, t1.The translated query evaluates the predicate that is taken from the WHERE clause of the
original query on every row in the table; since only one row is contained, the query would return
a single row with a single column whose value is TRUE. In practice, the number of TRUE values would
be summed up using the suM() aggregate function. A predicate must always evaluate to the same
value. Thus, it would be expected that the predicate evaluates to TRUE in the WHERE clause, meaning
that the result set of the original query should comprise the row. For this query, this is not the
case, and would allow finding the bug. In fact, the original query was optimized by the DBMS to
efficiently fetch the data, while the translated query evaluates the predicate on every row, which
made the incorrect optimization inapplicable. As with PQS, NoREC has been successful in detect-
ing a wide range of bugs. However, similar to PQS, a significant limitation is that the approach
is applicable only to WHERE clauses (and partially GRouP BY clauses). TLP advances NoREC in two
important ways. First, NoREC tackles the test oracle problem by inhibiting DBMS optimizations,
while TLP tackles the problem by partitioning a given query, thus, at the conceptual level, they
are orthogonal and complement each other. Second, it is unclear how NoREC could be extended to
support other features. In particular, aggregate functions are beyond the scope for NoREC, since
for these, bugs are due to incorrect computations in the aggregate functions themselves, rather
than due to incorrectly-evaluated predicates. We address these limitations through TLP. For exam-
ple, TLP can detect bugs in aggregate functions by partitioning their computations. Our evaluation
results demonstrate these distinct benefits of TLP.

3 APPROACH

Query Partitioning. We envisionage Query Partitioning as a versatile technique. The core idea of
our approach is to start from a given query and decompose it to multiple equivalent queries, whose
results can be composed to obtain the same result as the original query. We refer to the given query
as the original query. In the remainder of this paper, we assume that the original query is randomly
generated according to the specified format, but it could likewise be given by a user or specified
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in a test suite. We refer to the multiple queries that are equivalent to the original query as the
partitioning queries, each of which computes a partition. We refer to the operator that combines
the partitions as the composition operator (denoted by ).

Ternary Logic Query Partitioning. In this paper, we consider only a single instance of the general
partitioning strategy idea, namely Ternary Logic Partitioning (TLP). The core idea of the technique
is that a predicate on a row or intermediate result must either evaluate to TRUE, FALSE, or NULL. Thus,
an original query can be decomposed to three partitioning queries. One partitioning query fetches
rows where a predicate p holds, one where it does not hold, and one for which it evaluates to
NuLL. That is, we construct one predicate p, one predicate NOT p, and one predicate p 1S NuLL. Each
predicate is then used in WHERE and HAVING clauses. Accordingly, we refer to these predicates as
ternary predicate variants. Similarly to the original query, we assume this predicate to be randomly
generated. In the further, we demonstrate how this idea enables testing WHERE clauses, GROUP BY
clauses, HAVING clauses, aggregate functions, and DISTINCT queries.

Process. Figure 1 illustrates the process of TLP. Based on an existing database—which is randomly
generated in our implementation—a random query Q is generated. We denote the result set of this
query as RS(Q) and illustrate a result set using a circle. Based on TLP, we then derive three par-
titioning queries Q,,, O, and Q;? 1s Ny from Q. Each partitioning query computes a partition
of the result, which we denote as RS(Q,), RS(Q,), and RS(Q}’7 s NuLL)- Based on the composi-
tion operator ¢, the individual partitions are composed to obtain a result set RS(Q’). The equality
RS(Q) = RS(Q’) must hold. If we find that the result sets differ, a bug in the DBMS is detected.

Ternary Predicate Composition

Partitioning
_
RS(Q‘p) 0
RS(Q'p 15 nuLL)

Fig. 1. The idea of Ternary Logic Partitioning (TLP) is to partition a query Q into several partitioning queries
Qp, QL and QI’J Is NULL Whose partitions are composed to form a result set RS(Q) = RS(Q”). The dashed
lines indicate a comparison between the result sets. The check represents that the result sets match as
expected, while the bug represents that the DBMS is affected by a bug, causing the result sets to mismatch.

Random Query
Generator

Intuition on the partitions. Intuitively, the partitioning queries can be considered as computing a
subset or a partial bag of Q’s result set (i.e., the partitions are subsets or bags of RS(Q)). For both
the WHERE and HAVING test oracles, ¢ corresponds to the multiset addition &. For the DISTINCT and
GROUP BY oracles, the partitions can contain duplicate values; for these oracles, the o corresponds
to the set union U. For the aggregate test oracle, the partitions are not a subset of the original
query’s result; rather, they correspond to intermediate values. For example, when testing the MIN(
aggregate function, which computes the minimum, the partitions denote the minimum value of
their individual partitions.

Overview. Table 1 shows all the information necessary to fully realize the oracles, which are ex-
plained in detail in the subsequent sections. The first column denotes the oracle’s name. The second

, Vol. 1, No. 1, Article . Publication date: May 2020.



Ternary Logic Partitioning 7

column describes the format of the randomly-generated query Q. The third column describes the
format of a partitioning query Q;, . This query is instantiated with the three ternary predicate
variants. The fourth column describes the implementation of the composition operator. Reconsider
the motivating example (see Listing 1), which we found using the WHERE oracle, described in the
first row of the table. Query @ corresponds to the format of Q, while each partitioning query in
query (P) corresponds to the Qp,.,, format. The partitions in query @ are composed using the
UNION ALL operator, which corresponds to the & operator.

Query elements. The <columns> placeholder refers to a set of columns, or expressions that are evalu-
ated on each of the rows; this placeholder could also be an asterisk (), specifying that all columns
should be fetched. The <tables> placeholder refers to the tables, from which values are fetched.
The <joins> placeholder can refer to any of the joins (such as inner joins, outer joins, left joins,
right joins, and natural joins); although we do not propose an exclusive oracle to test joins, we
found that the existing oracles also detect bugs in them. The <e> placeholder refers to an arbitrary
expression. An element enclosed in square brackets ([1) denotes that the element is optional.

ORDER BYs. A random ORDER BY can be generated for each of the partitioning queries. Since our
oracles do not validate the ordering of the result, such clauses must not affect the query’s result.
However, they introduce additional complexity (e.g. by causing a DBMS to use an index for sort-
ing [Graefe 2011]), which can help to expose additional bugs. In fact, we found bugs that were
only triggered when using an OoRDER BY clause (see Listing 7). Some DBMS do not allow individual
ORDER BYs in queries joined using UNION or UNION ALL; for them, only a single oRDER BY might be used
when the partitions are composed using UNION or UNION ALL operators (see below).

Composition operator implementation. Every composition operator either contains a & or U oper-
ator to compose result sets with, and without removing duplicate rows. The testing tool can im-
plement them by iterating over each partitioning query’s result set and collecting the rows using
an appropriate data structure—for example, a list for & and a set for U. Implementing the opera-
tor in the testing tool is not applicable when the partition is used for further computations, like
in the aggregate oracles. For example, the aggregate MIN oracle computes the minimum value of
each partition’s minimum value; the minimum value cannot be easily determined by the testing
tool, since, for example, the order of strings can depend on COLLATE clauses that can be part of the
query. For these, a more convenient alternative is to use the UNION ALL and UNION operators, which
implement the operators’ semantics in SQL (see Section 2). Using them also tests these operators,
and, in fact, we found bugs in their implementation.

3.1 Testing WHERE Clauses

The WHERE oracle tests the correct implementation and optimization of WHERE clauses. It is the most
basic test oracle. Nevertheless, our evaluation shows that it is the most effective.

Queries. The WHERE oracle assumes an original query that lacks a WHERE clause, and constructs par-
titioning queries with a WHERE clause, each of which uses one of the ternary logic predicates. Our
intuition is that the original query is unlikely to compute an incorrect result, since it simply fetches
all records of a set of tables. In contrast, the partitioning query’s WHERE clauses might result in the
incorrect omission or addition of records.

Intuition on the test oracles. We believe that the WHERE oracle is sufficient to find the majority of
bugs that the TLP oracles can detect. While it specifically generates queries to test WHERE clauses, it
also stresses the implementation of a variety of DBMS components and optimizations [Chaudhuri
1998]. Specifically, we found that this test oracle can find bugs in physical access methods (in
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Table 1. Each of the Ternary Logic Partitioning (TLP) oracles is designed to test a specific SQL feature.

/ 4 4 ’
Oracle Q QPlern Q(ij Q—‘p) QP NULL)
WHERE SELECT <columns> SELECT <columns> Q/ LﬂQ; UQ,
FROM <tables> [<joins>] FROM <tables> [<joins>] p P pNULL
WHERE ptern
SELECT <columns> SELECT <columns> / / 4
WHERE FROM <tables> [<joins>] FROM <tables> [<joins>] QPwQﬂPwQPNULL
Extended ables joins ables joins
WHERE Pexisting WHERE Pexisting AND prern
GROUP BY SELECT <columns> SELECT <columns> Q/ UQL UQ,
FROM <tables> <joins> FROM <tables> <joins> p P p NULL
WHERE pzern
GROUP BY <columns> GROUP BY <columns>
SELECT <columns> SELECT <columns> / 4 4
HAVING FROM <t joi ioi QP Y Qﬁp Y Qp NULL
ables> <joins> FROM <tables> <joins>
[WHERE ...] [WHERE ...]
[GROUP BY ...] [GROUP BY ...]
HAVING prern
DISTINCT SELECT DISTINCT SELECT [DISTINCT] Ql U Qlﬁ U Q/
<columns> <columns> r P p NULL
FROM <tables> <joins> FROM <tables> <joins>
WHERE pzern
Aggregate ~ SELECT MIN(<e>) SELECT MIN(<e>) MIN(Q, WO, & O )
(MIN) FROM <tables> [<joins>] FROM <tables> [<joins>] p P p NULL
WHERE pzern
Aggregate ~ SELECT MAX(<e>) SELECT MAX(<e>) MAX(Q, W Q' w0 )
(MAX) FROM <tables> [<joins>] FROM <tables> [<joins>] P p ¥ ¥p NULL
WHERE pzern
Aggregate ~ SELECT SUM(<e>) SELECT SUM(<e>) SUM(Q;, L"JQLP WO vuLL)
(SUM) FROM <tables> [<joins>] FROM <tables> [<joins>] P
WHERE prern
Aggregate ~ SELECT COUNT(<e>) SELECT COUNT (<e>) SUM(Q, w Q.. W' )
(COUNT) FROM <tables> [<joins>] FROM <tables> [<joins>] r P p NULL
WHERE pzern
SUM(s(Q)wQ! ,wQ’
Aggregate ~ SELECT AVG(<e>) SELECT SUM(<e>) as s, ((Q{’ Q{w Q{JNULL))
(AVG) FROM <tables> [<joins>] COUNT (<e>) as ¢ SUM(C(QPQJQ_‘PL:JQP NULL)

FROM <tables> [<joins>]
WHERE pzern

particular index scans) [Astrahan et al. 1976], common physical operators [Chaudhuri 1998], join
algorithms [Graefe 1993], rewriting of queries [Haas et al. 1989], and general optimizations that are
applied to predicates (e.g., algebraic simplifications). We quantify this observation in Section 5.3.

Existing predicates. It might be desirable to create additional test queries based on queries that
already have a WHERE predicate, for example, when the original query is not randomly generated,
but when existing queries from a test suite are used. We propose the wHeRe Extended oracle for
this scenario. Based on an existing WHERE clause and a predicate pexissing, partitioning queries are
derived that use the AND operator to add an additional ternary variant to the predicate.

Comparison to NoREC. We believe that the WHERE oracle has similar bug-finding capabilities as
NoREC (see Section 5.2). Both test oracles focus on testing wHERE clauses. NoREC mainly focuses
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on testing for optimization bugs, by evaluating the predicate on every row, which disables most
optimizations. The WHERE oracle achieves this by introducing three variants of the query, which are
optimized to different degrees. For example, an index might only be applicable for one or two of
the partitioning queries, but not all of them, enabling it to also find such optimization bugs.

3.2 Testing Grouping

The DISTINCT, GROUP BY and HAVING test oracles are closely related, as they all test the grouping
and filtering of rows. We refer to them collectively as grouping oracles.

Queries. The DISTINCT oracle is based on the composition operator, which excludes duplicate rows
using the U operator. The partitioning queries themselves can thus optionally omit the pDISTINCT
keyword. The GROUP BY test oracle, similarly to the DISTINCT test oracle, relies on the U operator
to exclude duplicate rows. The columns in the GROUP BY must correspond to those columns that
are fetched. If the GROUP BY clause would contain additional columns that are not represented in
<columns>, then the additional groups would be invisible for the composition operator. Similarly,
if columns that are fetched are not represented in the GrRouP BY clause, duplicate values would nev-
ertheless be removed by U. Note that this might prevent some bugs from being found. The HAVING
oracle validates that HAVING clauses, which are logically applied after the GrRouP BY is performed, are
performed correctly. Thus, unlike the DISTINCT and GROUP BY oracles, the ternary predicates are
used in the HAVING clause, rather than in the WHERE clause.

Example. Listing 2 gives a representative example for the grouping oracles, specifically for the
DISTINCT oracle, to illustrate the format of the queries and to give an example of a bug they can
detect. The original query @ contains a DISTINCT clause and computes the correct value {0]03.
The partitioning queries (P) compute an incorrect result {@ |NULL}, since the affinity of the view
column co is mistakenly discarded—the affinity of a column determines what implicit conversions
are performed and is a concept unique to SQLite. Note that when removing the DISTINCT clause,
the query computes the same incorrect result as the partitioning queries, which is why the WHERE
test oracle cannot detect this bug. As discussed, the subqueries can optionally discard the bISTINCT
clause; in this example, either option would have detected the bug.

Listing 2. This simplified DISTINCT test case found a bug in SQLite and exemplifies the structure of the

queries of the grouping oracles.

CREATE TABLE t0(c@ INT);

CREATE VIEW v@(c@) AS SELECT CAST(t0.c@ AS INTEGER) FROM to;

INSERT INTO t0(c@) VALUES (0);

@ SELECT DISTINCT , FROM to LEFT OUTER JOIN v@ ON v@.co >= '@'; —— {@l@}\/

® SELECT 4 FROM t@ LEFT OUTER JOIN v0 ON v@.c0 >= '0' WHERE TRUE UNION
SELECT 4 FROM to LEFT OUTER JOIN v0 ON v@.c@ >= '@' WHERE NOT TRUE UNION
SELECT 4 FROM t@ LEFT OUTER JOIN v0 ON v@.c@ >= '@' WHERE TRUE IS NULL; ——

(0] NULL }&

3.3 Aggregate Functions

The aggregate query partitioning test oracles are used to test aggregate functions. We consider the
most-commonly used aggregate functions MIN(), MAX(), COUNT(), SUM(), and AVG(). Aggregate func-
tions can be optimized by decomposing the computation and distributing it [Jesus et al. 2015]. We
use the core idea of distributing the computation as a basis for testing aggregate functions.
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Self-composable aggregate functions. The simplest test oracles for aggregate functions are for self-
composable aggregate functions (i.e., MIN(), MAX(), SUM(), and CoUNT()). Unlike for the oracles intro-
duced above, the partition for aggregate functions is an intermediate result, rather than a subset
of the original query’s result set. For example, a partition of the MIN oracle computes the mini-
mum value of the respective partitioning query. To compute the partitions, an additional step is
necessary; for example, for MIN(), the overall minimum value must be computed. To this end, an-
other aggregate function can be applied; for example, to compute the overall minimum value, MIN()
can be applied once more. The aggregate function for the composition operator is not necessarily
the same as for the partitioning query. Consider, for example, the COUNT oracle. The partitioning
queries compute the number of rows in their partition using counT(). They are then summed up
using the sumM() aggregate function.

Self-composable aggregate functions example. Listing 3 shows an example for an original query @,
and the partitioning queries ® which is an actual test case generated by the MAX oracle, which de-
tected a bug in CockroachDB. In this example, the original query fetched NuLL, rather than e, which
was the result set returned by the composed partitioning queries. This bug affected interleaved ta-
bles, which are used to implement parent-child relationships between tables, when experimental
vectorization features were turned on. The developers explained that an incorrect predicate was
used to skip interleaved child rows when performing a reverse scan. Note that the partitioning
queries’ results must be assigned an alias (as aggr), so that the partitions can be composed.

Listing 3. This simplified MAX() test case detected a bug in CockroachDB, and exemplifies the structure of

the queries for self-composable aggregate functions.

SET vectorize=experimental_on;

CREATE TABLE t0(c@ INT);

CREATE TABLE t1(c@ BOOL) INTERLEAVE IN PARENT to(rowid);

INSERT INTO t0(c@) VALUES (0);

INSERT INTO t1(rowid, c@) VALUES (@, TRUE);

(0) SELECT MAX(t1.rowid) FROM t1; —— {NULL}AK

(P) SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c@ UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0

)i (v

Other composable aggregate functions. For aggregate functions that are not self-composable, but
composable, such as AVG(), we can compute the results using a result tuple, rather than a single
value. For example, to compute AVG(), we utilize that AVG(Q) corresponds to SUM(Q)/COUNT(Q).
Accordingly, each partitioning query computes a tuple (SUM(Q,), COUNT(Q,)), which is then
composed by dividing the sum of the first tuple values by the sum of the second.

Composable aggregate function example. Listing 4 gives a concrete example on a AVG oracle test case
that found a bug in DuckDB. Query @ shows an original query that computes the Av6() of the
values contained in column ce. Each partitioning query ® computes two values, one being the sum
(aliased as s) and one being the count of values in co (aliased as c). The expression SUM(s)/SuM(c) is
associated with the composition operator; it divides the accumulated sums with the accumulated
counts. For this test case, DuckDB computed the correct result for the original query. For the
partitioning queries, only the first aggregate query fetches a row, which is expected. However, the
addition of 9223372036854775807 and 2 in SUM() overflowed, which was an unexpected result
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and caused a silent wraparound. The bug was confirmed as a real bug. However, the developers
were already aware of it, and had not addressed it, since addressing this bug without significant
performance impact was non-trivial. After we reported it, they nevertheless decided to fix it.

Listing 4. This simplified AVG test case demonstrates a bug in DuckDB, and shows the structure of the queries

for composable, but not self-composable aggregate functions.

CREATE TABLE t0(c@ BIGINT);

INSERT INTO t@(c@) VALUES (2);

INSERT INTO t@(c@) VALUES (9223372036854775807) ;

(0) SELECT AVG(t@.c0) FROM t0; —— {4.611686018427388e+18}V

(P) SELECT SUM(s)/SUM(c) FROM (
SELECT SUM(t@.c@) AS s, COUNT(t@.c@) AS c FROM t@ WHERE c@ UNION ALL
SELECT SUM(t@.c@) AS s, COUNT(t0.c@) AS c FROM to WHERE NOT c@ UNION ALL
SELECT SUM(t@.c@) AS s, COUNT(t0.c@) AS c FROM t@ WHERE c@ IS NULL

Y; —— {—4611686018427387903)3

Commutativity. All the aggregate functions that we considered are commutative. For our purpose,
we also assume suM() and AVG() to be commutative, although the processing order matters for
floating-point numbers. To account for rounding errors caused by this, we compare floating-point
numbers in the result sets using an epsilon. Other non-commutative aggregate functions, such as
GROUP_CONCAT (), which concatenates strings, exist. In order to support these, an operator-specific
comparator could be implemented. For a example, a comparator for GROUP_CONCAT() could split the
concatenated string by its delimiter(s), sort the tokens, and use the sorted tokens for comparison.
Such an implementation would be more tedious compared to the other test oracles. Furthermore,
non-commutative functions provide less optimization potential for the DBMS. Thus, we did not
consider non-commutative functions further in our work.

4 SELECTED BUGS

This section gives an overview of interesting bugs that we found using TLP. This selection is neces-
sarily biased, and we sought to demonstrate the range of different bugs that the individual oracles
detected. For brevity, we show only reduced test cases that demonstrate the underlying core prob-
lem, rather than the original and partitioning queries that found the bugs.

4.1 WHERE clauses

This section presents bugs detected by the WHERE oracle. Unless noted otherwise, these bugs can
also be detected by NoREC and PQS. Note that in Section 5.2, we systematically investigate the
relationship between the WHERE oracle and NoREC.

MySQL comparison bug. Listing 5 shows a bug where a comparison of numbers yielded an incorrect
result. The comparison 0.9 > te.ce should evaluate to TRUE for ce=e and fetch the row in te. However,
MySQL failed to fetch the row. This is one of multiple basic bugs that we found in MySQL. We still
consider it interesting, since it shows that also mature DBMS are prone to such bugs.

Listing 5. MySQL incorrectly evaluated the comparison and failed to fetch the row.

CREATE TABLE t0(c@ INT);
INSERT INTO t@(c0) VALUES (0);

SELECT 4 FROM t0 WHERE 0.9 > t0.c0; —— {0}V (&

TiDB comparison bug. We found a bug in TiDB where fetching from a view unexpectedly omitted
a row (see Listing 6). The wHERE clause should evaluate to TRUE and fetch a row, since it refers to
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the constant value 1 in the view. However, TiDB unexpectedly did not fetch a row. The bug was
classified as a P1 bug, which is the second highest severity category. We believe that this bug is
interesting, since it demonstrates that our approach can detect bugs in views, without specifically
aiming to test them.

Listing 6. TiDB failed to fetch a row from a view.
CREATE TABLE t0(c0 INT);
CREATE VIEW v0(c@, c1) AS SELECT t0.c0, 1 FROM to;
INSERT INTO t@ VALUES (0);
SELECT v0.c@ FROM v@, t0 WHERE vo.cl; —— {01V [}

ORDER BY affects a query’s result. We found a bug in CockroachDB, where a value was unexpect-
edly represented using the E notation (see Listing 7). Specifically, while the default row engine
encodes the fetched decimal value as 1819487610, the vector-based engine, which was used for the
partitioning queries, represented the value as 1.81948761E+9. While this was confirmed as a bug,
it was not deemed to be very important, considering that both represent the same value. How-
ever, we believe that this bug is interesting, since it demonstrates that an 0RDER BY can incorrectly
influence a query’s result.

Listing 7. The ORDER BY clause affected the representation of the decimal value 1819487610 when using the
vector-based execution engine in CockroachDB.

SET SESSION VECTORIZE=on;

CREATE TABLE t@ (c@ DECIMAL PRIMARY KEY, c1 INT UNIQUE);

INSERT INTO tQ@(c@) VALUES (1819487610):

SELECT t0.c® FROM to ORDER by t0.cl1; —— {1819487610)V {1.81948761E+9}R%

Missing error for invalid regular expression. We found a bug in CockroachDB where an invalid
regular expression caused a SELECT to retrieve an empty result set, rather than printing an error
message (see Listing 8). We found this bug because also the other partitioning queries did not
fetch any rows. Both PQS and NoREC could not detect such bugs, since for these approaches, the
original query would result in the expected error above. Rigger and Su [2020a] specifically explain
that NoREC cannot detect errors due to nondeterminism in the evaluation of queries.

Listing 8. Rather than exiting with an error, CockroachDB returned an empty result set for this query.

CREATE TABLE t0(c@ INT);
CREATE VIEW v0(c@) AS SELECT COUNT_ROWS() FROM t0;
SELECT 4 FROM v@ WHERE '' !~ '+'; —— error parsing regexp: missing argument to

L 2%
repetition operator: v {1

4.2 Grouping Bugs
This section presents bugs that were detected by the GROUP BY, HAVING, and DISTINCT oracles.

GROUP BY disregards COLLATE. We found a bug in DuckDB, where the GrRouP BY operator disre-
garded a COLLATE NOCASE (see Listing 9). Note that a coLLATE clause controls the behavior of compar-
isons for strings; in this example, it specifies that string comparisons should be performed without
considering the case of the strings. While the SELECT was expected to return a result set containing
either 'a' or 'A', it fetched both. The GrRouP BY oracle detected this bug, since, unlike the GROUP BY
operator, the UNION operator respected the coLLATE. This bug is interesting, since it demonstrates a
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basic bug in the operator itself, rather than an optimization bug, to which NoREC is limited. How-
ever, we found this bug shortly after cOLLATES were merged to master, and before this feature was
released, suggesting that this feature was not yet thoroughly tested.

Listing 9. The GROUP BY operator disregarded that c0 has a COLLATE NOCASE in DuckDB.
CREATE TABLE t0(c@ VARCHAR COLLATE NOCASE);
INSERT INTO t@(c@) VALUES ('a'), ('A'):
SELECT t0.c0 FROM t@ GROUP BY t0.co; — {'a'} or {'A'}\/ {'a', 'A'}m

Incorrect VARIANCE(0) optimization. We found a bug in CockroachDB where VARIANCE (@) IS NULL
was unexpectedly optimized to FALSE (see Listing 10). Interestingly, VARIANCE (0) evaluates to NULL if
the table contains zero or one rows; if the table contains at least two rows, it evaluates to o. The
optimization was thus incorrect for this case, where the table contained only one row. We believe
that this case is interesting, since aggregate functions cannot be used in WHERE clauses, so although
this is an optimization bug, it could not have been found by NoREC.

Listing 10. CockroachDB unexpectedly optimized VARIANCE(0) to FALSE.
CREATE TABLE t0(c@ INT);
INSERT INTO t@(c@) VALUES(9);
SELECT t0.c@ FROM t@ GROUP BY t0.c® HAVING NOT (VARIANCE (@) IS NULL); —— {3V {0}

Non-deterministic MAX(). We found a bug in DuckDB, where a complex query using GRouP BY and
HAVING clauses, as well as UNION resulted in a nondeterministic result (see Listing 11). As explained by
the developers, this bug was caused since non-inlined strings were not being properly copied into
the hash table when stored as MAX() values. Since this lead to a user-after-free error, this bug might
have also been detected by undefined-behavior checkers [Regehr 2010; Stepanov and Serebryany
2015]. We believe that this bug is interesting nevertheless, since it demonstrates the range of bugs
that TLP can detect.

Listing 11. DuckDB nondeterministically fetched two and three rows for this query.
CREATE TABLE t0(c@ INT);
CREATE TABLE t1(c@ VARCHAR);
INSERT INTO t1 VALUES (0.9201898334673894), (0);
INSERT INTO t0 VALUES (0);
SELECT 4 FROM t@, t1 GROUP BY t@.c@, t1.c@ HAVING t1.c@!=MAX(t1.c@) UNION ALL
SELECT 4 FROM t@, t1 GROUP BY t0.c@, t1.c@ HAVING NOT t1.c@>MAX(t1.cQ); ——

. 2
nondeterministic resultr®

Non-deterministic GROUP BY. We found a bug in TiDB, where a SELECT nondeterministically fetched
a duplicate row (see Listing 12). We could only reproduce the bug with a large number of rows;
note that we removed the INSERTs from the listing for brevity. We believe that is likely a bug that is
caused by a race condition. TiDB is written in Go, for which race detectors seem to exist, indicating
that such a bug might have been found by them. However, race condition checkers are known to
be slow [Serebryany et al. 2011], and TLP might be viable and cheaper alternative to identify test
cases that trigger race conditions.

Listing 12. TiDB computed a non-deterministic result for this query.

CREATE TABLE t0(c@ INT, cl INT);
CREATE TABLE t1(c@ INT, c1 INT);
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CREATE TABLE t2(c@ INT, c1 INT);

—— 27 INSERTS

ANALYZE TABLE t1, t2;

SELECT t1.c@ LIKE t1.c@ FROM t1, t2, t0 GROUP BY t1.c0 LIKE t1.cQ; ——

. e
nondeterministic resultm®

4.3 Aggregate Bugs

Similar to grouping bugs, aggregate functions are interesting since they cannot be detected by
neither NoREC nor PQS.

MAX() and UTF-16 bug. We found a bug in SQLite, where MAX() computed an incorrect result for
the ordering of UTF-16 strings and non-ASCII characters (see Listing 13). The SQLite developers
explained that SQLite was incorrectly using the UTF-8 collating sequence for some, but not all
expressions in database having a UTF16LE encoding. Although this bug might seem obscure, we
believe that it is interesting, because it would go likely undetected by users, but result in unex-
pected results when an application relies on it.

Listing 13. SQLite computed an unexpected ordering for special non-ASCII characters and UTF-16LE encod-
ing.

PRAGMA encoding = 'UTF-16"';

CREATE TABLE t0(c0 TEXT);

INSERT INTO t0(c@) VALUES ('m'), (1);

SELECT MAX(CASE 1 WHEN 1 THEN t0.ce END) FROM to; —— {0}V {'0'}®

SUM() optimization. Listing 14 demonstrates an optimization bug in DuckDB. As explained by the
developers, to sum up the constants, an optimization sum += input 4 count was applied, where input
refers to the constant -1. Since count was declared as an unsigned integer, the result was cast to
an unsigned number, resulting in an underflow [Dietz et al. 2012]. This finding demonstrates that
also aggregate functions are affected by optimization bugs, which NoREC is unable to find.

Listing 14. DuckDB computed an incorrect result due to an optimization that summed up constants by using
an unsigned, rather than a signed integer.

CREATE TABLE t0 (c@ INT);

INSERT INTO t@ VALUES (0);

SELECT SUM(—1) FROM t0; —— {-13¥ {1.8446744073709552e+19}%

MIN() initialization bug. Listing 15 demonstrates an bug in MIN() in DuckDB. The culprit was that
the minimum value of the domain, —2% for integers, was used to indicate whether a minimum
value has been set. Since the expression CAST(c0 as BIGINT)<< 32 sets the minimum value for co=-1,
the implementation mistakenly assumed that no minimum value was set, and returned NULL.

Listing 15. DuckDB assumed that no MIN() value was set, since the minimum value corresponds to —263.

CREATE TABLE t0(c@ INT);
INSERT INTO t@ VALUES (—1);

SELECT MIN(CAST(c0 AS BIGINT) << 63) FROM t@; —— {-92233720368547758083% {NULL }R&

5 EVALUATION

We evaluated both the effectiveness and generality of TLP in finding bugs, compare it to NoREC,
and investigate the overlap between the individual test oracles.
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Table 2. We tested a diverse set of popular and emerging DBMS; all numbers are the latest as of May 2020.

Popularity Rank
DBMS DB- Stack GitHub LOC?  First Kind Tested By
Engines Over- Stars ! Release
flow
SQLite 9 4 1.5k 0.3M 2000 Embedded, OLTP PQS, NoREC
MySQL 2 1 5.0k 3.8M 1995 Traditional PQS
PostgreSQL 4 2 6.3k 1.4M 1996 Traditional PQS, NoREC
CockroachDB 77 - 17.7k  1.1M 2015 NewSQL NoREC
TiDB 118 - 231K 0.8M 2017 NewSQL pPQs3
DuckDB - - 0.5k 59k 2018 Embedded, OLAP -

Implementation. We implemented our approach in SQLancer, in which also PQS and NoREC were
implemented. Since SQLancer did not support the generation of databases and queries for TiDB
and DuckDB, we added support for these systems. Furthermore, we implemented the generation
of many small, previously unsupported features in SQLancer (e.g., generating arrays and array
operations in CockroachDB). The test oracles are implemented in about 500 LOC for each DBMS
under test. Note that our implementation is available at https:/github.com/sqlancer.

Tested DBMS. In our evaluation, we considered six popular and widely-used DBMS with a wide
range of characteristics to demonstrate the generality of TLP (see Table 2). SQLite [2020] and
DuckDB [Raasveldt and Miihleisen 2020] are both embedded DBMS, meaning that they run within
an application’s process. Traditional systems like MySQL [2020] and PostgreSQL [2020] are stan-
dalone, meaning that they run in a dedicated process. NewSQL systems like CockroachDB [Cock-
roach Labs 2020] and TiDB [PingCAP 2020] are distributed relational DBMS, which aim to provide
a high degree of scalability by splitting up the database [Pavlo and Aslett 2016]; however, we tested
only their SQL component. Online Transactional Processing (OLTP) workloads are those that con-
sist of frequent inserts, updates, and deletes. In contrast, Online Analytical Processing (OLAP)
workloads typically involve complex queries with aggregates. Traditional systems, NewSQL sys-
tems, and SQLite are mostly optimized towards OLTP workloads. DuckDB is a representative of
an OLAP systems, and stores its data column-wise. CockroachDB and TIDB are mainly developed
commercially (by Cockroach Labs and PingCAP); they provide an open version of their DBMS,
which we tested, on GitHub. DuckDB has been developed by a research group, but “is intended to
be a stable and mature database system.” SQLite is developed by a small development team lead
by D. Richard Hipp. MySQL has open-source contributors, and is also developed by Oracle. Post-
greSQL is backed by open-source contributors.

5.1 Effectiveness

Study methodology and challenges. We started testing the DBMS while implementing our approach,
and tested them in a period of roughly three months. A significant factor limiting our bug-finding
efforts were duplicate test cases for bugs. For a single bug, SQLancer typically generated many test
cases that would trigger it, making it infeasible to filter out such test cases manually, which was
also observed by Rigger and Su [2020a,b]. While automatic bug prioritization approaches were

For PostgreSQL, MySQL, and SQLite, only (inofficial) GitHub mirrors are available.

2These numbers are not accurate, but represent a best effort estimate. We omitted counting tests, where this was possible
(using cloc). For TiDB, we counted the repositories of PD, TiKV, and TiDB, which are all necessary to run TiDB.
3PingCAP implemented PQS for TiDB; for the other DBMS, the approaches were implemented as part of the evaluation of
the respective papers [Rigger and Su 2020a,b].
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proposed to the need to compilers [Chen et al. 2013], applying them for DBMS would be more
challenging and slow due to needing to install, set up, and stop many versions of a single DBMS.
To address this, we typically avoided the generation of features that induce already known bugs;
however, this was not always possible—for example, when we could not discover the necessary
conditions to reproduce the bug—or restricted the bug-finding capabilities significantly (e.g., by
avoiding the generation of comparisons). When we found a bug, we first automatically reduced
it [Regehr et al. 2012], to then manually produce a minimal test case that demonstrated the under-
lying bug. Before reporting a bug, we checked the public bug trackers for similar bugs, to avoid
creating duplicate bug reports.

Oracle implementation. Since the WHERE oracle is the simplest oracle, we implemented it first for
every DBMS. We found that the other test oracles detected bugs that also the WHERE oracle could
find. Since the other oracle’s test cases were typically more complex than the ones generated by
the WHERE oracle (e.g. the GROUP BY oracle could detect many of the same bugs, but by generating
redundant GROUP BYs), it was not desirable to use them before the WHERE oracle’s bug-finding satu-
rated. Consequently, we implemented the other oracles only for DBMS for which the WHERE oracle
saturated, namely SQLite, PostgreSQL, DuckDB, and CockroachDB. For both TiDB and MySQL,
we omitted reporting a number of suspected bugs found by the WHERE oracle, due to the large num-
ber of open bugs. For TiDB, 35 bugs were verified, but have not yet been addressed. For MySQL, 6
bugs were confirmed, but not fixed. Many of the MySQL bugs were rather basic (e.g. see Listing 5),
which prevented us from testing MySQL more comprehensively. Furthermore, we found a large
number of open bugs in its bug tracker; in fact, even a large number of the bugs reported by the
authors of PQS have not yet been addressed. In addition, MySQL has a closed development pro-
cess, with only the release versions being publicly available. These appear every 2-3 months. We
found one bug in MySQL version 8.0.19, which was fixed quickly, but will appear only in MySQL
8.0.21 (i.e., potentially half a year later). We implemented the WHERE Extended oracle for only one
DBMS—CockroachDB—after the simple WHERE oracle could not find additional bugs. It did not de-
tect any additional bugs, which is expected; as explained in Section 3.1, this oracle is mainly useful
to utilize an existing test suite that contains queries that have WHERE clauses.

Found Bugs. Table 3 shows the number of bugs we found and the status of the corresponding bug
reports. We opened 181 bug reports, 175 which were either fixed or confirmed by the developers.
123 bugs have been fixed, which demonstrates that the DBMS developers considered the majority
of the bugs to be important. Almost all bugs were addressed by code changes; only 1 bug was
addressed by a documentation change. The behavior in 3 bug reports was surprisingly considered
to be intended by the bug verifiers of MySQL; we discuss one of them in detail below. We opened
only 3 duplicate bug reports, as we carefully checked the bug tracker for similar bugs. We could
comprehensively test SQLite, CockroachDB, PostgreSQL, and DuckDB. That is, we were not re-
stricted by any open bug reports that preventing us from testing by making it difficult to filter out
duplicate test cases for bugs. For TiDB and MySQL, we stopped testing due to the large number
of open bug reports. We found more bugs in DuckDB and TiDB than in the other DBMS, since the
other DBMS were comprehensively tested by NoREC and PQS (see Table 2). We did not find any
bugs in PostgreSQL, which is why omitted this DBMS from the table. This is not surprising. PQS
detected only one logic bug in it, and NoREC did not detect any logic bugs.

Test Oracles. Table 4 shows how many bugs each individual test oracle detected. In total, we found

77 logic bugs. The WHERE oracle detected 60 bugs, suggesting that—even though it is the concep-
tually simplest oracle—it is the most effective one. For DBMS that were intensively tested, like
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Table 3. We found 175 previously unknown bugs, 123 of which have been fixed.

Closed
DBMS Fixed Verified Intended Duplicate
SQLite 4 0 0 0
MySQL 1 6 3 0
CockroachDB 22 9 0 0
TiDB 26 35 0 1
DuckDB 71 1 0 2

Table 4. We found 60 bugs with the WHERE oracle, 10 with the aggregate oracle, 3 with the HAVING oracle,
and the others by internal DBMS errors and crashes.

Query Partitioning Oracle

DBMS WHERE Aggregate GROUP BY HAVING DISTINCT Error Crash
SQLite 0 3 0 0 1 0 0
CockroachDB 3 3 0 0 22 2
TiDB 29 0 1 0 0 27 4
MySQL 7 0 0 0 0 0 0
DuckDB 21 4 1 2 1 13 19

SQLite and CockroachDB, this oracle was less effective. In Section 5.2, we will thus closely inves-
tigate the relationship between NoREC and the query partitioning WHERE oracle. The other oracles
detected 17 bugs in total; although many of these bugs were serious, the number of found bugs is
low when compared to the bugs found by the WHERE oracle. Our analysis suggests that the features
tested by these oracles relies mostly on functionality in the DBMS that is tested by WHERE oracle;
in Section 5.3, we investigate this hypothesis based on coverage information. Besides logic bugs,
we found 25 crash bugs and 62 error bugs. Crash bugs refer to process crashes (e.g., a memory
error resulting in a SEGFAULT). Error bugs were due to unexpected errors in the DBMS (e.g., inter-
nal errors printing a stack trace). The higher number of crash bugs in DuckDB is explained by us
using the debug build for testing, which resulted in assertion violations, which accounted for 11
of the crash bugs. While the developer also appreciated those bug reports, finding them was not a
goal for us, since they could have been found by existing approaches, such as fuzzers. We report
these numbers nevertheless, to put the numbers of found logic bugs into relation. As with PQS
and NoREC, we found larger number of error and crash bugs than logic bugs.

Soundness. In theory, our approach should not be affected by false positives (i.e., when SQLancer
reports a bug, it is always a real bug). However, the MySQL bug verifiers considered 3 of our bug
reports as false positives. For example, consider the test case in Listing 16. The WHERE oracle found
an inconsistency in the result, since neither of the partitioning queries fetched a row, while the
original query fetched the row with ce=e. While reducing the bug, we found strong evidence that
led us to believe that this was indeed a bug. First, rewriting the query to evaluate the predicate
indicated that the predicate should evaluate TRUE, so also NoREC would have considered it to be
a bug. Second, the query’s behavior changes when omitting the UNIQUE constraint and yields the
result we would expect; this is unexpected, because an index should never affect a query’s result.
Third, an earlier version of MySQL computed the result we expected. Fourth, TiDB, which strives
to be compatible with MySQL, computed the result we would expect. Despite these, the report was
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Listing 16. The report associated with this test was considered a false positive by the MySQL bug verifiers.
CREATE TABLE t@(c@ DECIMAL UNIQUE);

INSERT INTO t0(c@) VALUES(0):

SELECT 5 FROM t0 WHERE '' BETWEEN t0.c@ AND t0.co; —— (0}V (1R

closed, based on the argument that Oracle !8c computes the same result. After we further inquired,
a second bug verifier subsequently elaborated that an empty STRING cannot represent a valid DECIMAL
value, referring to the SQL standard. While indeed a warning that the empty string is not a valid
DECIMAL is printed, such warnings are printed for many other queries too, which do not violate the
TLP assumptions. Thus, we still believe that TLP is sound, and does not result in false positives.

5.2 Comparison with NoREC

We studied how NoREC relates to TLP. Both NoREC and TLP are metamorphic oracles and have
similar advantages (e.g., the small implementation effort required to realize them) as well as the
same disadvantage (i.e., they cannot establish a ground truth). We did not compare to PQS, which
is complementary to TLP and NoREC, and whose advantages and disadvantages were already
studied [Rigger and Su 2020a]. Both PQS and NoREC are mostly limited to finding bugs in WHERE
clauses and are not applicable to the other features TLP can test (see Section 2). Consequently, we
compare only the TLP WHERE oracle with NoREC.

Methodology. Fairly comparing the two techniques is challenging. Optimally, we could apply each
technique to the same DBMS and compare the number of distinct bugs that they find. However,
determining whether a test case triggers a specific bug would be difficult and labor-intensive to
determine [Marcozzi et al. 2019]. Given that NoREC had been used to test two DBMS before we
tested them using TLP—SQLite and CockroachDB—analyzing any additional bugs that the WHERE
oracle found gives an insight into what additional bugs it can find. Similarly, for DBMS in which
the WHERE oracle did not find any additional bugs, NoREC could be applied to validate whether it
can find any additional bugs. Given that DuckDB is the only DBMS that had not been tested by
NoREC, and on which our testing efforts saturated, we implemented and tested NoREC only on
this DBMS. In addition, we sought to give an estimate on the oracles’ overlap based on a manual
analysis of the found bugs. Specifically, we tried to translate a NoREC test case to a WHERE oracle
test case and vica versa, by following a similar methodology as for the comparison of NoREC and
PQS [Rigger and Su 2020a]. For the majority of cases, this is straightforward. To translate a NoREC
test case to a WHERE oracle test case, we can take the original query with a WHERE clause, and create
the two other partitioning queries by assuming the WHERE clause predicate to be the randomly-
generated predicate based on which the ternary variants are derived. To obtain the original query,
the WHERE clause must be removed. Similarly, to translate a WHERE oracle test case to a NoREC test
case, one of the partitioning queries can be assumed as the original query for NoREC. In fact, this
was not necessary for many queries, as we typically used a NoREC test case to demonstrate the
underlying bug, which is more compact than a TLP test case. The limitation of this manual analysis
is that for bugs for which we cannot derive an equivalent test case, we cannot necessarily conclude
that no such test case exists, because a different test case might trigger the same underlying bug.

Additional WHERE bugs in DBMS tested by NoREC. SQLite and CockroachDB were extensively tested
by NoREC, and we found 3 additional bugs in them using the WHERE oracle (all in CockroachDB).
In a first step, we closely analyzed these bugs to determine whether NoREC could have found
them, using the methodology to translate test cases described above. One bug could have been
found directly by NoREC; we speculate that it was not found because the test case triggering the
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bug relied on the INTERVAL data type, which we added to SQLancer, and which was not present
when NoREC was evaluated. The bug in Listing 7 could have been found by NoREC, but only if
the content of the records is fetched in the translated query, which was described as unnecessary
by Rigger and Su [2020a]. The bug in Listing 8 could not have been found by NoREC, since the
translated query results in the expected error, rather than yielding an unexpected result.

Additional NoREC bugs in DBMS tested by TLP WHERE. DuckDB is the only DBMS for which our
bug-finding efforts saturated, and which has not yet been tested by NoREC. Thus, we implemented
NoREC for this DBMS to determine whether NoREC could find any bugs in this system. Note that
DuckDB does not provide the 1S TRUE and IS FALSE operators, which are used in the translated query
that the DBMS is unlikely to optimize. However, this is not problematic, since the translation can
be implemented using other operators. Specifically, an original, potentially optimized query with a
predicate p can be translated to a query SELECT SUM(count) FROM (SELECT (p IS NOT NULL AND p)::INT
as count FROM <tables>), so that the size of the original query’s result set must be equal to the count
obtained by the second query. The more complex translated query does not hinder the effectiveness
of NoREC’s bug-finding capabilities, since, as with the original approach, the expression has to be
evaluated on every record of the target tables, disabling many optimizations. Overall, we did not
find any bugs using NoREC on DuckDB. Note that we verified that NoREC could have detected
bugs that were found by the WHERE oracle.

Manual analysis of the NoREC bugs. In total, NoREC found 50 bugs. We could mechanically trans-
late 42 NoREC test cases so that the bugs could have been found using the WHERE oracle. For 8 test
cases, a mechanic translation as described above was not possible. We identified two root causes
for this. The first one was that NoREC detected the bug in an aggregate function that was used to
efficiently sum up for how many records a predicate evaluates to TRUE in the translated, unopti-
mized query, and affected 4 cases. We speculate that these bugs might have been found by one of
the TLP aggregate oracles. The second root cause was that the bug was unexpectedly triggered in
the translated, unoptimized query, which evaluates the predicate on every row, which affected 4
cases. We believe that the WHERE oracle might overlook these bugs, since it does not compare to
which value a predicate is evaluated when used in a different context.

Manual analysis of the TLP WHERE bugs. We analyzed all 60 bugs found by the WHERE oracle (count-
ing also the 3 bugs described above). For 48 bugs, we could mechanically derive NoREC test cases.
In 5 of these cases, comparing the record count was insufficient to detect the bug; also the contents
had to be compared, contrary to prior suggestions [Rigger and Su 2020a]. For the other 12 bugs, it
is doubtful that NoREC could have detected them. 3 test cases triggered bugs related to joins and
did not require a WHERE clause. Although the WHERE clauses were redundantly generated by the
WHERE oracle, it detected these bugs, because the overall number of fetched rows mismatched. 3
test cases triggered bugs in operators, both in NoREC’s unoptimized and optimized case. Further-
more, we found 1 bug that was triggered in the UNION operator, which is out-of-scope for NoREC.
1 bug was due to a hint to the query optimizer, which also took effect when used in the translated,
unoptimized query, but not in all of the partitioning queries. As mentioned above, one test case
resulted in an incorrect result, rather than an error. 3 test cases induced undefined behavior, but
did not result in an unexpected result when using NoREC.

5.3 Test Oracle Coverage

During our experiments, we found that different oracles can detect the same underlying bugs in a
number of cases, which is an expected behavior. For example, the WHERE oracle specifically aims
for testing WHERE clauses, but also the subsequent oracles generate WHERE clauses, and thus might
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Fig. 2. The bar plots present the coverages of the individual oracles. The red, dotted line and the numbers
above it denote the accumulated coverage of the oracles to the left side. The blue, dashed line and the
numbers below it denote the same for the oracles to the right side.

detect bugs in their handling. However, subsequent oracles are not guaranteed to find all bugs; for
example, the GROUP BY oracle might overlook bugs in the handling of WHERE since an optimization
might no longer be applicable when using a Group BY. Furthermore, it would be preferable to use
the WHERE oracle even for bugs that also the GROUP BY oracle can find, since developers typically
strive to understand a bug based on a minimal example, where redundant Group BY clauses would
slow down triaging and the reduction of the bug, presenting an impediment.

To investigate the overlap quantitatively, we measured the coverage of individual and combined
oracles on DuckDB. DuckDB is a good choice for this, since we tested this DBMS comprehensively,
and since every oracle found bugs that were not found by the other oracles. Figure 2 displays the
line coverage, when running each of the 15 configurations for 10 hours. The barplots show the
coverage of the individual oracles. The dotted red line, which rises starting from the left, illustrates
the aggregated coverage by summing up all the coverage of the oracles to the left. The dashed blue
line, which rises starting from the right, illustrates the same for all oracles to the right.

The maximum coverage that is achieved by utilizing all test oracles is 56.1%. The coverage is rather
low, because we did not test components such as subqueries, window functions, transactions, and
sequences as well as due to code that is never executed (e.g., due to external dependencies). In
comparison, PQS achieved only a coverage reaching from 23.7% to 43.0%. By generating databases
alone, already a test coverage of 48.3% is achieved. Each test oracle achieves a similar coverage;
the range of test coverages is 0.6% (i.e., reaching from 55.3% to 55.9%). When using test oracles in
combination, a small coverage increase can be observed, independent from in which order oracles
are combined. However, the HAVING oracle seems to decrease the coverage, presumably since it
lowers the throughput of the other oracles. Overall, we believe that these findings confirm our in-
tuition that the oracles stress a large common part of the DBMS. Nevertheless, a coverage increase
can be observed when adding additional oracles, and, indeed each test oracle found unique bugs.

Despite this evidence that there is a large overlap, it should be noted that coverage information
provides only limited insights for DBMS. Jung et al. [2019] found that the core components of
DBMS have achieve a coverage of >95% already after running tens of queries. Rigger and Su [2020a]
argued for NoREC that coverage information is not insightful, and that they found many bugs in
SQLite despite its impressive test suite, which provides 100% MC/DC coverage.

6 DISCUSSION

Bug importance. It is difficult to measure the importance of the bugs we found. The developers of
the DBMS we tested explicitly told us that they appreciated our bug-finding efforts, and considered
many of the bugs to be important. For example, an engineering manager from Cockroach Labs
wrote on a social media platform that we are “doing the database industry a great service. Thank
you!”. Similarly, the most-contributing committer to DuckDB told us: This work is tremendously
helpful for us, and I imagine anyone working on a DBMS. Usually these bugs would be slowly found by
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users over the years, not only negatively affecting the experience of those users but also requiring much
more effort to debug and reproduce [...]. For us especially it is extremely helpful because we have not
yet gone through decades of users using the system, so this testing allows us to take a massive shortcut
and squeeze out many bugs that would otherwise be found by users. PingCAP started a bug bounty
program for a release candidate of their DBMS TiDB, while we were testing it. As part of this,
PingCAP also assigned severities to our bug reports, reaching from PO (for the most serious issues)
to P3 (documentation bugs). We reported 28 bugs as part of this program. While, based on the bug-
bounty guidelines, incorrect query results should result in a PO classification, PingCAP updated
the guidelines after we reported the first batch of bugs, to reserve them the right to downgrade
bugs, to which we agreed. Consequently, 22 bugs were classified as P1, and 6 as P2, that is, the
second-highest and third-highest severities, demonstrating that the bugs we found were deemed
important. In fact, we could redeem the points we received to obtain more than 100 T-shirts.

Found bugs. As shown in Table 4, most bugs that we found were crash and error bugs. We do
not consider these a contribution of this paper, since they could have also been found by fuzzers
and other testing approaches. We list them merely for completeness, and since the give insight
on the distribution of errors. That we found more errors and crash bugs might indicate that these
are more common, or easier to find than logic bugs. Although the DBMS developers also greatly
valued these bugs, we consider logic bugs to be more dangerous. For error and crash bugs, users of
the DBMS obtain direct feedback that the query failed (e.g., since the process exits with an error).
For logic bugs, however, errors might go unnoticed.

NoREC and PQS. Compared to NoREC and PQS, TLP can detect bugs in GRoUP BY clauses, DISTINCT
queries, HAVING clauses, and aggregate functions. PQS and NoREC are not applicable for testing
most of these features, except partially in corner cases (e.g., when a table contains only a single
row, aggregate functions can partially be tested by PQS). TLP is a metamorphic testing approach,
and similarly to NoREC, it cannot establish a ground truth (i.e., an operator or function might be
consistently behave incorrectly, so that no bugs can be detected). In fact, due to this, Rigger and
Su [2020a] found that NoREC can detect only about half of the bugs that PQS can find. Thus, TLP
is complementary to PQS, and not a replacement for it. The WHERE oracle overlaps with NoREC as
demonstrated in Section 5.2. Our manual analysis suggest that the WHERE oracle can find 12 bugs
that NoREC can find, and that NoREC can find 8 bugs that the WHERE oracle cannot find. A threat
to this is that the manual analysis was only a best effort comparison.

Limitations. Our testing does not apply to transactions, window functions, sequences, and non-
deterministic functions. Queries can have ambiguous results, which limits the technique; this af-
fects subqueries in particular [Rigger and Su 2020a], which we did not test. We found that espe-
cially SQLite has some peculiarities, such as treating the integer ¢ and floating-point number 0.0
as the same number. CockroachDB and TiDB are distributed DBMS, and we tested only their SQL
components. We considered only the most commonly used aggregate functions, many of which
were straightforward to decompose. An overview of various decompositioning strategies, also for
other classes of aggregate functions, is given by Jesus et al. [2015].

Implementation order. Developers might wonder in which order to implement test oracles. The
WHERE oracle is the simplest, but most effective oracle to implement. Only when this oracle does
not find any more bugs is it useful to implement the subsequent oracles, which generate additional
clauses in addition to the wHERE clause. Generating the simplest test case possible is preferable, since
it speeds up the triaging, reduction, and understanding of bugs. Similarly, the HAVING oracle should
be implemented only after the GROUP BY oracle cannot find any additional bugs, since the HAVING
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Listing 17. Query Partitioning could be applied to, for example, test the semantics of individual operators.
CREATE TABLE t0(c@ INT, cl1 INT);
@ SELECT 4 FROM t@ WHERE c@ <=> c1;
® SELECT 4 FROM t@ WHERE (c@ IS NULL and c1 IS NULL) UNION ALL
SELECT 4 FROM t@ WHERE (c@ IS NOT NULL and c1 IS NOT NULL AND c@ = cl1);

oracle also generates GROUP BY clauses. The aggregate test oracles are more complex and specialized
to an individual aggregate function; thus, we believe that these could be implemented last.

Other partitioning strategies. Besides Ternary Query Partitioning, a number of additional partition-
ing strategies are imaginable. As one example, the partitioning could be specific to operators or
functions. For example, MySQL provides an operator <=>, which is similar to the equality operator,
but evaluates also to a boolean value when comparing to a NULL value. A query using the operator
in a predicate could be partitioned by replacing it with a series of 1s NULL checks and an equality
comparison. Listing 17 gives a concrete example of an original query @, which is translated to
two partitioning queries ® that are expected to compute the same result.

7 RELATED WORK

The closest related work is Pivoted Query Synthesis (PQS) and Nonoptimizing Reference Engine
Construction (NoREC), which both aim to find logic bugs and were both extensively discussed. A
number of approaches to test various aspects of DBMS and related software have been proposed.

Differential testing of DBMS. Differential testing [McKeeman 1998] refers to a testing technique
where a single input is passed to multiple systems that are expected to produce the same output;
if the systems disagree on the output, a bug in at least one of the systems has been detected. It
has proven to be effective in many domains [Brummayer and Biere 2009; Kapus and Cadar 2017;
McKeeman 1998; Yang et al. 2011]. Slutz [1998] applied this technique for testing DBMS in a sys-
tem called RAGS by generating SQL queries that are sent to multiple DBMS and then observing
differences in the output sets. While the approach was effective, the author stated that the small
common core and the differences between different DBMS were a challenge, which was also noted
by Rigger and Su [2020a,b]. Differential testing was, however, found to be useful to compare query
plans within a DBMS, or the performance of multiple versions of a DBMS. Specifically, Gu et al.
[2012] used options and hints to force the generation of different query plans, to then rank the
accuracy of the optimizer based on the estimated cost for each plan. Jung et al. [2019] used differen-
tial testing in a system called APOLLO to find performance regression bugs in DBMS, by executing
a SQL query on an old and newer version of a DBMS.

Solver-based testing of DBMS. ADUSA is a query-aware database generator that generates inputs
as well as the expected result for a query [Khalek et al. 2008]. It translates the schema and query
to an Alloy specification, which is subsequently solved. The approach could reproduce various
known and injected bugs in MySQL, HSQLDB, and also find a new bug in Oracle Database. We
believe that the high overhead that solver-based approaches incur might inhibit such approaches
from finding more DBMS bugs.

Random and targeted queries. Many query generators have been proposed for purposes such as
bug-finding and benchmarking. SQLsmith is a widely-used, open-source random query generator,
which has found over 100 bugs in widely-used DBMS [Seltenreich 2019]. Bati et al. proposed an ap-
proach based on genetic algorithms to incorporate execution feedback for generating queries [Bati
et al. 2007]. SQLFUZZ [Jung et al. 2019] also utilizes execution feedback and randomly generates
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queries using only features that are supported by all the DBMS systems they considered. Khalek et
al. proposed generating both syntactically and semantically valid queries based on a solver-backed
approach [Abdul Khalek and Khurshid 2010]. All these random-query generators can be used to
find bugs such as crashes and hangs in DBMS. When paired with the test oracles proposed in this
paper, they could also be used to find logic bugs.

Random and targeted databases. Many approaches have been proposed to automatically generate
databases. Given a query and a set of constraints, QAGen [Binnig et al. 2007b; Lo et al. 2010] gener-
ates a database that matches the desired query results by combining traditional query processing
and symbolic execution. Reverse Query Processing takes a query and a desired result set as an
input to then generate a database that could have produced the result set [Binnig et al. 2007a].
As discussed above, ADUSA is a query-aware database generator [Khalek et al. 2008]. Gray et
al. discussed a set of techniques utilizing parallel algorithms to quickly generate billions-record
databases [Gray et al. 1994]. DGL is a domain-specific language that generates input data following
various distributions and inter-table correlations based on iterators that can be composed [Bruno
and Chaudhuri 2005]. An improved database generation might enable TLP to find additional bugs.

Metamorphic testing. Metamorphic testing [Chen et al. 1998] addresses the test oracle problem by,
based on an input and output of a system, generating a new input for which the result is known.
Central in this approach is the metamorphic relation, which can be used to infer the expected result.
This technique has been applied successfully in various domains [Chen et al. 2018; Donaldson et al.
2017; He et al. 2020; Le et al. 2014; Segura and Zhou 2018; Winterer et al. 2020]. The test oracle
proposed as part of this paper is a metamorphic one, since based on the original query and its result
set, we generate partitioning queries, whose composed result sets must be equal to the original
query’s result set. Note that also NoREC is a metamorphic test oracle.

Optimizing aggregate functions. We adopted ideas from optimizing aggregate functions to testing
them. Cohen [2006] studied user-defined aggregate functions in the context of query optimization,
query rewriting, and view maintenance. Yu et al. [2009] studied the interfaces and implementation
of user-defined aggregate functions in the context of distributed aggregation. Since we decompose
a query to partitioning queries, which can be computed independently, we study a similar problem.
However, in contrast to their work, our goal is not to decompose the query for optimization, but to
test the DBMS. [Jesus et al. 2015] surveyed the techniques in distributed data aggregation, provided
a formal framework, and characterized the types of aggregate functions.

8 CONCLUSION

This paper has presented the general idea of Query Partitioning, and a concrete instantiation of this
idea, termed Ternary Logic Partitioning (TLP). The core idea of Query Partitioning is to partition a
query into multiple so-called partitioning queries, each of which computes a partition of the result.
By using a composition operator, the partitions can be combined to yield the same result as the
original query; if the result differs, a bug in the DBMS has been detected. TLP partitions queries
based on a boolean predicate, which can either evaluate to TRUE, FALSE, or NULL. TLP can detect
bugs in various features, including WHERE clauses, GROUP BY clauses, HAVING clauses, DISTINCT queries,
and aggregate functions. Our evaluation on six widely-used DBMS has demonstrated that TLP is
highly effective and general, as it could detect 77 logic bugs, at least 17 of which cannot be detected
by existing techniques. Despite TLP’s effectiveness, we believe that a number of additional query
partitioning strategies can be devised, which might allow finding additional bugs in DBMS.
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